

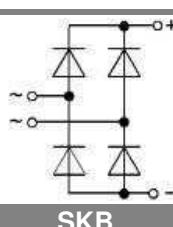
V_{RSM}, V_{RRM} V	V_{VRMS} V	$I_D = 35 \text{ A}$ ($T_c = 29^\circ\text{C}$) Types	C_{\max} μF	R_{\min} Ω
400	125	SKB 35/04		0,3
800	250	SKB 35/08		0,7
1200	400	SKB 35/12		1
1600	500	SKB 35/16		1,5

Power Bridge Rectifiers

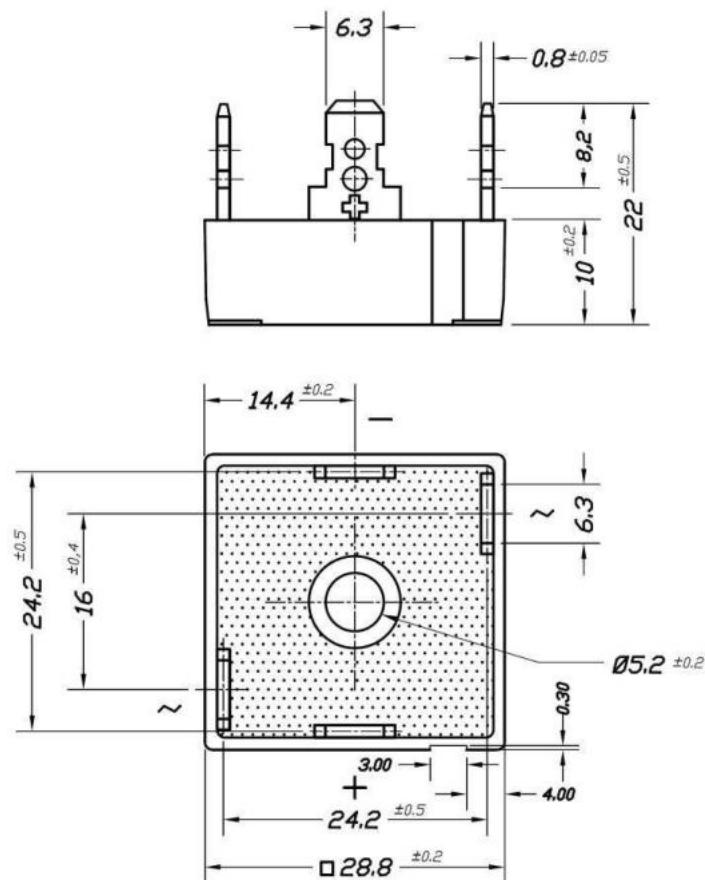
SKB 35

Features

- Square plastic case with isolated metal base plate and fast-on connectors
- Blocking voltage up to 1600 V
- High surge current
- Easy chassis mounting
- UL recognized plastic material


Typical Applications

- Rectifier for power supplies
- Input rectifier for variable frequency drives
- Rectifier for DC motor field supplies
- Battery charger rectifiers
- Recommended snubber network: $RC: 50 \Omega, 0.1 \mu\text{F}$ ($P_R = 1 \text{ W}$)


1) Freely suspended or mounted on an insulator

2) Mounted on a painted metal sheet of min. 250 x 250 x 1 mm

Symbol	Conditions	Values	Units
I_D	$T_a = 45^\circ\text{C}$, P1/120 black	22	A
	$T_a = 40^\circ\text{C}$, chassis ²⁾	13,5	A
	$T_a = 45^\circ\text{C}$, P1/120 black	18,5	A
	$T_a = 40^\circ\text{C}$, chassis ²⁾	12	A
	$T_a = 45^\circ\text{C}$, isolated ¹⁾	3,9	A
I_{FSM}	$T_{vj} = 25^\circ\text{C}, 10 \text{ ms}$	380	A
	$T_{vj} = 150^\circ\text{C}, 10 \text{ ms}$	330	A
	$T_{vj} = 25^\circ\text{C}, 8,3 \dots 10 \text{ ms}$	700	A^2s
	$T_{vj} = 150^\circ\text{C}, 8,3 \dots 10 \text{ ms}$	540	A^2s
V_F $V_{(TO)}$ r_T I_{RD} I_{RD} t_{rr} f_G	$T_{vj} = 25^\circ\text{C}, I_F = 150 \text{ A}$	max. 1,9	V
	$T_{vj} = 150^\circ\text{C}$	max. 0,85	V
	$T_{vj} = 150^\circ\text{C}$	max. 7	$\text{m}\Omega$
	$T_{vj} = 25^\circ\text{C}, V_{RD}=V_{RRM}$	300	μA
	$T_{vj} = 0^\circ\text{C}, V_{RD}=V_{RRM} \geq V$		μA
	$T_{vj} = 150^\circ\text{C}, V_{RD}=V_{RRM}$	5	mA
	$T_{vj} = 0^\circ\text{C}, V_{RD}=V_{RRM} \geq V$		mA
	$T_{vj} = 25^\circ\text{C}$	10	μs
		2000	Hz
$R_{th(j-a)}$ $R_{th(i-c)}$ $R_{th(c-s)}$ T_{vj} T_{stg}	isolated ¹⁾	14,5	K/W
	chassis ²⁾	4,2	K/W
	total	1,5	K/W
	total	0,15	K/W
		- 40 ... + 150	°C
V_{isol} M_s M_t a w		- 55 ... + 150	°C
	a.c. 50 ... 60 Hz; r.m.s.; 1 s / 1 min. to heatsink	3000 / 2500 2 ± 15 %	V~ Nm Nm m/s^2
	approx.	18	g
F_u		25	A
Case		G 10b	

Dimensions in mm

Case G 10b

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.